WA-24-3010

#### MEMORANDUM

September 11, 1975

To: Gerry Calkins

From: Shirley Prescott

Subject: Naselle Youth Camp STP Efficiency Study

Scott Jeane and I conducted a routine efficiency study on the above plant on July 22, 1975.

Attached is the standard survey report form showing plant information and results of lab and field tests.

This is a small activated sludge plant with extended aeration manufactured under the name "Air-O-Flow". It serves from 160-200 people.

At the time of the survey the plant was operating within secondary treatment levels showing a reduction of 90% BOD (6.93 #/day) and a reduction of 92% TSS (6.67 #/day). Median pH values ran 6.5. This slightly low value was attributed to an overload of chlorine bleach in the laundry water.

Good disinfection was noted for all coliform samples collected. Fecal coliform on all samples was 10 and chlorine residuals varied from 0.3 ppm in 15 seconds to 1.0 in 3 minutes.

Nutrient analysis of the composite effluent sample revealed the following levels:

|                    | ppm | lbs/day |
|--------------------|-----|---------|
| NO <sub>2</sub> N  | .80 | .21     |
| NO <sub>2</sub> N  | .02 | .005    |
| NH <sup>2</sup> N  | 8.0 | 2.14    |
| T. Kjeldahl        | 8.2 | 2.19    |
| OPO, P             | 3.0 | .8      |
| T-070 <sub>4</sub> | 4.4 | 1.17    |

Flow readings taken at a  $60^{\circ}$  V-notch weir indicated the flow meter was reading 74% low. It would appear that at least part of the problem is the flow float bulb is rubbing against the side of the still well. Observed flows ranged from 0.011 to 0.068 MGD and averaged 0.032 MGD.

The boys at the camp do their own laundry which has resulted in a foaming problem and a low pH both of which appear to be a result of over zealous

use of washing soap and chlorine bleach. The foam created is hosed each morning into Peach Creek.

The chlorination meter is not operable.

There is an alarm system and light which is operable

SP:ee

### STP Survey Report Form

## Efficiency Study

| Naselle<br>City Youth Camp F                                                                                                                                      | Plant Type                                                                                                                                               | Pop. Served                                                                                           | 160-200 Design                                                                  |                                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------|
|                                                                                                                                                                   |                                                                                                                                                          |                                                                                                       | Capacit<br>Intermittent                                                         |                                           |
|                                                                                                                                                                   |                                                                                                                                                          |                                                                                                       | Personnel Prescott & C                                                          |                                           |
| Comp. Sampling Freq                                                                                                                                               | quency 30 min                                                                                                                                            | Sampling Alec                                                                                         | quot 210 ml                                                                     |                                           |
| Weather Conditions                                                                                                                                                | (24 hr) <u>dry</u>                                                                                                                                       | Are facilitie                                                                                         | es provided for comp                                                            | lete by-                                  |
| pass of raw sewage?                                                                                                                                               | Yes                                                                                                                                                      | _No/Frequency of                                                                                      | bypass                                                                          |                                           |
|                                                                                                                                                                   |                                                                                                                                                          |                                                                                                       | orinated? Lt can be Yes                                                         |                                           |
| Was DOE Notified?                                                                                                                                                 | Dischar                                                                                                                                                  | ge - Intermittent_                                                                                    | Continuous_                                                                     |                                           |
|                                                                                                                                                                   | Plant                                                                                                                                                    | Operation                                                                                             |                                                                                 |                                           |
| Total flow                                                                                                                                                        | 032 MGD                                                                                                                                                  | How measured                                                                                          | 60° V-notch weir                                                                | rit-diministration participas deputations |
| Maximum flow                                                                                                                                                      | 068 MGD                                                                                                                                                  | Time of Max                                                                                           |                                                                                 |                                           |
| Minimum flow .                                                                                                                                                    | 011 MGD                                                                                                                                                  | _ Time of Min                                                                                         |                                                                                 | - minuster                                |
| Pre Cl <sub>2</sub>                                                                                                                                               | #/day                                                                                                                                                    | Post Cl <sub>2</sub>                                                                                  |                                                                                 | #/day                                     |
|                                                                                                                                                                   |                                                                                                                                                          |                                                                                                       |                                                                                 |                                           |
|                                                                                                                                                                   | Fleld                                                                                                                                                    | d Results                                                                                             |                                                                                 |                                           |
|                                                                                                                                                                   |                                                                                                                                                          |                                                                                                       |                                                                                 |                                           |
|                                                                                                                                                                   | Influ                                                                                                                                                    | ient                                                                                                  | Effluent                                                                        |                                           |
| Determinations                                                                                                                                                    |                                                                                                                                                          |                                                                                                       | Effluent<br>Max. Min. Mean                                                      | n Median                                  |
| Temp °C                                                                                                                                                           | Max. Min.                                                                                                                                                | Mean Median                                                                                           | Max. Min. Mean                                                                  | 19                                        |
| Temp °C pH (Units) Conductivity                                                                                                                                   | Max. Min.  22 19  7.8 6.8                                                                                                                                | Mean Median 20.2 7.4                                                                                  | Max. Min. Mean                                                                  | 19<br>6.5                                 |
| Temp °C pH (Units) Conductivity (µmhos/cm²) Settleable                                                                                                            | Max. Min.  22 19  7,8 6.8  825 235                                                                                                                       | Mean Median 20.2 7.4 405                                                                              | Max. Min. Mean  19 18 6.8 6.1  390 375                                          | 19<br>6.5<br>382                          |
| Temp °C pH (Units) Conductivity (µmhos/cm²)                                                                                                                       | Max. Min.  22 19  7.8 6.8                                                                                                                                | Mean Median 20.2 7.4                                                                                  | Max. Min. Mean                                                                  | 19<br>6.5<br>382                          |
| Temp °C pH (Units) Conductivity (µmhos/cm²) Settleable                                                                                                            | Max. Min.    22   19     7,8   6.8     825   235     18.0   4.5                                                                                          | Mean Median 20.2 7.4 405                                                                              | Max. Min. Mean  19 18 6.8 6.1  390 375  trace trace trace                       | 19<br>6.5<br>382                          |
| Temp °C pH (Units) Conductivity (µmhos/cm²) Settleable                                                                                                            | Max. Min.    22   19     7,8   6.8     825   235     18.0   4.5                                                                                          | Mean Median  20.2  7.4  405                                                                           | Max. Min. Mean  19 18 6.8 6.1  390 375  trace trace trace                       | 19<br>6.5<br>382                          |
| Temp °C pH (Units) Conductivity (µmhos/cm²) Settleable                                                                                                            | Max. Min.  22 19 7.8 6.8  825 235  18.0 4.5  Laboratory Res                                                                                              | Mean Median  20.2  7.4  405  14.1)  sults on Composite                                                | Max. Min. Mean  19 18 6.8 6.1  390 375  trace trace trace                       | 19<br>6.5<br>382<br>trace                 |
| Temp °C pH (Units) Conductivity (µmhos/cm²) Settleable Solids (mls/l)  Jaboratory No.  5-Day BOD ppm                                                              | Max. Min.    22   19     7.8   6.8     825   235     18.0   4.5     Laboratory Res   Influent     75-3150     260                                        | Mean Median  20.2 7.4 405  14.1  sults on Composite  Effluent  3151  26.0                             | Max. Min. Mean  19 18 6.8 6.1  390 375  trace trace trace                       | 19<br>6.5<br>382<br>trace                 |
| Temp °C pH (Units) Conductivity (umhos/cm²) Settleable Solids (mls/l)  Laboratory No.  5-Day BOD ppm LOD ppm LOD ppm 2.S. ppm                                     | Max. Min.    22   19     7.8   6.8     825   235     18.0   4.5     Laboratory Res   Influent     75-3150                                                | Mean Median  20.2  7.4  405  14.1  sults on Composite  Effluent  3151  26.0  56.0  201                | Max. Min. Mean  19 18 6.8 6.1 390 375 trace trace traces                        | 19<br>6.5<br>382<br>trace                 |
| Temp °C pH (Units) Conductivity (umhos/cm²) Settleable Solids (mls/l)  Laboratory No. 5-Day BOD ppm COD ppm                                                       | Max. Min.    22                                                                                                                                          | Mean Median  20.2 7.4 405  14.1  sults on Composite  Effluent  3151  26.0  56.0  201  147             | 19 18 6.8 6.1 390 375 trace trace trace = 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 19<br>6.5<br>382<br>trace                 |
| Temp °C pH (Units) Conductivity (µmhos/cm²) Settleable Solids (mls/l)  Jaboratory No. 5-Day BOD ppm JOD ppm JOD ppm J.S. ppm J.S.S. ppm J.V.S.S. ppm J.V.S.S. ppm | Max. Min.    22   19     7.8   6.8     825   235     18.0   4.5     Laboratory Res   Influent     75-3150     260     520     653     286     315     88 | Mean Median  20.2  7.4  405  14.1  sults on Composite  Effluent  3151  26.0  56.0  201  147  25  12.0 | Max. Min. Mean  19 18 6.8 6.1 390 375 trace trace traces                        | 19<br>6.5<br>382<br>trace                 |
| Temp °C pH (Units) Conductivity (µmhos/cm²) Settleable Solids (mls/l)  Jaboratory No.  J-Day BOD ppm JOD ppm JOD ppm J.S. ppm J.S. ppm J.S.s. ppm J.S.s. ppm      | Max. Min.    22   19     7.8   6.8     825   235     18.0   4.5     Laboratory Res   Influent     75-3150     260     520     653     286     315        | Mean Median  20.2 7.4 405  14.1  sults on Composite  Effluent  3151  26.0  56.0  201  147  25         | 19 18 6.8 6.1 390 375 trace trace trace = 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 19<br>6.5<br>382<br>trace                 |

#### Laboratory Bacteriological Results

| Lab No. | Samplino<br>Time | g Co<br>Total | lonies/100 m<br>Fecal |          | Cl <sub>2</sub> Residual |        |  |
|---------|------------------|---------------|-----------------------|----------|--------------------------|--------|--|
|         |                  | Coliform      | Coliform              | Strep    | 15 Sec                   | 3 Min. |  |
| 3152    | 0930             | <160 Est.     | 10                    |          | 0.4                      | 0.75   |  |
| 3153    | 1215             | <180 Est.     | 10                    |          | 0.4                      | 1.0    |  |
| 3154    | 1445             | < 40 Est.     | 10                    |          | 0.3                      | 0.5    |  |
|         | <u> </u>         |               |                       |          |                          |        |  |
|         | <u> </u>         |               |                       |          |                          |        |  |
|         |                  |               |                       | <u> </u> |                          |        |  |

#### Additional Laboratory Results

|                     | ppm  | #/day |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------|------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NO3-N ppm -         | . 80 | .21   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| NO2-N ppm -         | .02  | .005  | Control of the contro |
| NH3-N ppm -         | 8,0  | 2.14  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| T. Kjeldahl-N ppm - | 8.2  | 2.19  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0-P04-P ppm -       | 3.0  | .80   | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| T-P04-P ppm -       | 4.4  | 1.17  | Language Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

Operator's Name Mr. Hillis Phone No. 484-3223

Furnish a flow diagram with sequence and relative size and points of chlorination.



#### Type of Collection System

| Combined _x Separate Both           | Estimate flow contributed by surface or ground water (infiltration |
|-------------------------------------|--------------------------------------------------------------------|
|                                     | MGD                                                                |
| Plant Loading In                    | nformation                                                         |
| Annual average daily flow rate(mgd) | Peak flow rate(mgd)                                                |
| Dry                                 | Dry                                                                |
| Wet                                 | Wet                                                                |
| COMMENTS:                           |                                                                    |

#### STATE OF WASHINGTON

# DEPARTMENT OF ECOLOGY

WATER QUALITY LABORATORY

| C | 0 | P | Ι | E | S |   | T | 0 | : |   |   |   |   |   |   |  |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|--|
| • | • | • | ٠ | ٠ | • | ٠ | • | • | • | ٠ | • | • | • | ٠ | • |  |
| • | • | ٠ | • | • | • | • | • | • | • | • | • | ٠ | • | • | • |  |
| Ĺ | Å | B | • | Ė | i | i | Ė | ŝ | ٠ | • | • | • | • | • | • |  |

ORIGINAL TO:

DATA SUMMARY

| ne Stf   | _                                              |                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                            | Со                                                                                         | llected By_ <i>6</i>                                                                                                                                                               | .S. SEANE II                                                                     |
|----------|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
|          | -                                              |                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                            | Go                                                                                         | al, Pro./Obj.                                                                                                                                                                      |                                                                                  |
| 3150     | 51                                             | 52                                                                                                                                | 53                                                                                                                                                   | 54                                                                                                                                                         | 55                                                                                         |                                                                                                                                                                                    | STORET                                                                           |
| INF      | eff                                            | 1                                                                                                                                 | 1                                                                                                                                                    | 5:30                                                                                                                                                       | POACH<br>CR.<br>1445                                                                       |                                                                                                                                                                                    |                                                                                  |
| 7.9      | 7.0                                            |                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                            |                                                                                            |                                                                                                                                                                                    | 00403                                                                            |
| 140.     | 12.                                            |                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                            |                                                                                            |                                                                                                                                                                                    | 00070                                                                            |
| 560.     | 350.                                           |                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                            |                                                                                            |                                                                                                                                                                                    | 00095                                                                            |
| 520.     | 56.                                            |                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                            |                                                                                            |                                                                                                                                                                                    | 00340                                                                            |
| 260.     | 26.                                            |                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                            |                                                                                            |                                                                                                                                                                                    | 00310                                                                            |
| -        | -                                              | 160                                                                                                                               | 180                                                                                                                                                  | 40                                                                                                                                                         | 2500                                                                                       |                                                                                                                                                                                    | 31504                                                                            |
| _        |                                                | 410                                                                                                                               | 410                                                                                                                                                  | Kio                                                                                                                                                        | 80<br>80                                                                                   |                                                                                                                                                                                    | 31616                                                                            |
| <u> </u> | .80                                            |                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                            |                                                                                            | ·                                                                                                                                                                                  | 00620                                                                            |
|          | .02                                            |                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                            |                                                                                            |                                                                                                                                                                                    | 00615                                                                            |
|          | 8.0                                            |                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                            |                                                                                            |                                                                                                                                                                                    | 00610                                                                            |
|          | 8.2                                            |                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                            |                                                                                            |                                                                                                                                                                                    | 00625                                                                            |
|          | 3.0                                            |                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                            |                                                                                            |                                                                                                                                                                                    | 00671                                                                            |
|          | 4.4                                            |                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                            |                                                                                            |                                                                                                                                                                                    | 00665                                                                            |
| 653      | 201                                            |                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                            |                                                                                            |                                                                                                                                                                                    | 00500                                                                            |
| 286      | 147                                            |                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                            |                                                                                            |                                                                                                                                                                                    |                                                                                  |
| 315      | 25                                             |                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                            |                                                                                            |                                                                                                                                                                                    | 00530                                                                            |
| 88       | 12                                             |                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                            |                                                                                            |                                                                                                                                                                                    |                                                                                  |
|          |                                                |                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                            |                                                                                            |                                                                                                                                                                                    |                                                                                  |
|          |                                                |                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                            |                                                                                            |                                                                                                                                                                                    |                                                                                  |
|          |                                                |                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                            |                                                                                            |                                                                                                                                                                                    |                                                                                  |
|          |                                                |                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                            |                                                                                            |                                                                                                                                                                                    |                                                                                  |
| PM un1   | 888 0+                                         | herric                                                                                                                            | 0.000                                                                                                                                                | ifica                                                                                                                                                      | ND 4                                                                                       | G INone Patrice                                                                                                                                                                    | todii                                                                            |
|          | 3150<br>INF<br>7.9<br>140.<br>520.<br>260.<br> | 3150 51  INF EFF 7.9 7.0  140. 12. 560. 350. 520. 56. 260. 2680 .02 .8.0 .02 .8.0 .8.2 .3.0 .4.4 .653 201 .286 147 .315 25 .88 12 | 3150 51 52  INF EFF 0930  7.9 7.0  140. 12.  560. 350.  520. 56.  260. 26.  /60  /160  .80  .02  8.0  8.2  3.0  4.4  653 201  286 147  315 25  88 12 | 3150 51 52 53  INF EFF O130 1215  7.9 7.0  140. 12.  560. 350.  520. 56.  260. 26.  160 410  .80  .02  8.0  8.2  3.0  4.4  653 201  286 147  315 25  88 12 | 3150 51 52 53 54  INF CFF 0130 1215 2:30  7.9 7.0  140. 12.  560. 350.  520. 56.  210. 26. | 3150 51 52 53 54 55  INF CFF 0130 1215 2:30 1445  7.9 7.0  140. 12.  560. 350.  520. 56.  260. 26.  /60 /80 40 2500  .80  .02  8.0  8.2  3.0  4.4  653 201  286 147  315 25  88 12 | Goal, Pro./Obj.  3150 51 52 53 54 55  INF CFF OFF CFF CFF CFF CFF CFF CFF CFF CF |

Convert those marked with a \* to PPB (PPM X 10 $^3$ ) prior to entry into STORET